Research paper

The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fluid of suicide attempters and is associated with increased blood–brain barrier permeability

F. Ventorp a,b,*1, R. Barzilay c,d,1, S. Erhardt e, M. Samueſsson f, L. Träskman-Bendz a, S. Janelidze a, A. Weizman d,g, D. Offen c, L. Brundin a,b,h

a Psychoimmunology Unit, Division of Psychiatry, Department of Clinical Sciences, Lund University, Lund, Sweden
b Department of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, Michigan, United States
c Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petach-Tikva, Israel
d Research Unit at Geha Mental Health Center, Petach-Tikva, Israel
e Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
f Psychiatry Section, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
g Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
h Laboratory of Behavioral Medicine, Van Andel Research Institute, Grand Rapids, Michigan, United States

A R T I C L E I N F O

Article history:
Received 26 October 2015
Received in revised form 7 December 2015
Accepted 26 December 2015
Available online 6 January 2016

Keywords:
Suicide
CSF
Hyaluronic acid
CD44
MMP9
Inflammation

A B S T R A C T

Background: The glycosaminoglycan hyaluronic acid (HA) is an important component of the extracellular matrix (ECM) in the brain. CD44 is a cell adhesion molecule that binds to HA in the ECM and is present on astrocytes, microglia and certain neurons. Cell adhesion molecules have been reported to be involved in anxiety and mood disorders. CD44 levels are decreased in the cerebrospinal fluid (CSF) of depressed individuals, and the CD44 gene has been identified in brain GWAS studies as a possible risk gene for suicidal behavior.

Method: We measured the CSF levels of HA and the soluble CD44 (sCD44) in suicide attempters (n=94) and in healthy controls (n=45) using ELISA and electrochemiluminescence assays. We also investigated other proteins known to interact with CD44, such as osteopontin and the matrix metalloproteinases MMP1, MMP3 and MMP9.

Results: The suicide attempters had higher CSF levels of HA (p=.003) and MMP9 (p=.004). The CSF levels of HA correlated with BBB-permeability (rho=0.410, p<.001) and MMP9 correlated with sCD44 levels (rho=0.260, p=.005).

Limitations: Other relevant biological contributors to suicidal behavior is not addressed in parallel to the specific role of CD44-HA signaling. The gender distribution of the patients from whom CSF was analyzed was uneven.

Conclusions: Increased BBB-permeability and HA levels might be results of increased neuroinflammation and can play a role in the pathobiology of suicidal behavior. The CD44 signaling pathway might be considered a novel target for intervention in mood disorders.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A large part of the brain volume consists of the extracellular matrix (ECM) and cell-to-ECM adhesions are important for highly coordinated brain functions such as memory and learning (Di-tyatev et al., 2010). Cell adhesion molecules have recently been described to be involved in anxiety and mood disorders (Sandi, 2004; Sandi and Bisaz, 2007). In addition, accumulating animal studies indicate that adhesion molecules play a role in the response to stress (Bisz and Sandi, 2012; Chocyk et al., 2010; Gil-bert-Juan et al., 2011; Redwine et al., 2003; Sandi and Bisaz, 2007). Anxiety, mood disorders and exposure to stressful life events are all substantial risk factors contributing to suicidal behavior (Brown et al., 2000; Moscicki, 1997). Interestingly, Gene Ontology analyses in suicide victims has shown that genes involved in the expression of cell adhesion proteins, like CD44, may indeed be risk genes for suicidal behavior (Galfalvy et al., 2011; Thalmeier et al., 2008).

In the brain, the formation and structure of the ECM is dependent on the glycosaminoglycan hyaluronic acid (HA) (Bignami et al., 1993). The main receptor for HA is CD44, a cell surface adhesion molecule found on most mammalian cells (Goodison et al.,

http://dx.doi.org/10.1016/j.jad.2015.12.069
0165-0327© 2016 Elsevier B.V. All rights reserved.
2. Materials/subjects and methods

2.1. Study participants

Suicide attempters (n=94) were enrolled at admission to the Lund University Hospital after fulfillment of the criteria of Beck et al. (Resnik et al., 1973). The suicidal intent of the patients was explicit upon clinical interview. All patients gave informed consent to participate and the studies were approved by the Lund University Medical Ethics Committee. The demographic data of all participants are described in Table 1. Patients did not receive any psychotropic medication during a washout period of 14 ± 6 (mean ± SD) days after the suicide attempt, except for occasional doses of benzodiazepines or benzodiazepine-like drugs. Other ongoing medications are listed in Table 2. After the washout, CSF was drawn using a standardized lumbar puncture. Medications for suicide attempters and healthy controls. Suicide attempters on any psychotropic medication (except for occasional doses of benzodiazepines or benzodiazepine-like drugs) underwent a washout period before the lumbar puncture.

2.2. Analyte measurements

OPN, MMP9, MMP3, and MMP1 were assessed by an electrochemiluminescence-based immunoassay (MDI, Rockville, MD, US). HA and sCD44 levels were measured by an ELISA (R&D psychiatrist according to the DSM-III-R and DSM-IV criteria. The severity of the symptoms was assessed by the Comprehensive Psychopathological Rating Scale (CPRS) (Asberg et al., 1978), the Suicide Assessment Scale (SUAS) (Stanley et al., 1986), as well as the Montgomery–Åsberg Depression Rating Scale (MADRS) (Montgomery and Åsberg, 1979) and Brief Scale of Anxiety (BSA) (Tyrer et al., 1984) as derived from the CPRS. All participants underwent a physical examination in concurrence with the lumbar puncture. Psychiatric diagnoses (Axis I in DSM-IV) and somatic conditions of suicide attempters are listed in Table 3.

2.3. Statistical analysis

We hypothesized that inflammation-related low expression of CD44 and altered CD44-HA signaling are linked to dysfunction of the BBB. Therefore, to evaluate the potential importance of CD44-HA signaling in the pathophysiology of suicidal behavior, we measured the CSF levels of HA and the soluble CD44 (sCD44) in suicide attempters (n=94) compared to healthy controls (n=45). We also investigated other proteins known to interact with CD44, such as OPN and MMPs.
The statistical analysis was conducted using SPSS Statistics 21 (IBM, Armonk, New York, US). Analysis of co-variance (ANCOVA) was used to compare means between healthy controls and suicide attempters controlling for age and gender. The variables were checked for the assumptions of normality, homogeneity of variance and homogeneity of regression slopes. Linear Regression was used (Mann–Whitney test) to compare means of MMP9 due to non-parametrical distribution. Correlations were checked for the assumptions of normality, homogeneity of variance and homogeneity of regression slopes. Linear Regression was performed. There was a correlation between CSF HA levels (rho = 0.410, p < .001) and the BBB permeability (Fig. 2A) as well as CSF sCD44 and the BBB permeability (Spearman’s rho = 0.241, p = .033), Fig. 2B.

3.2. Associations between analytes and blood–brain permeability

To further investigate the source of CD44-ligands in the CSF, the relationship between the analytes and the blood–brain barrier (BBB) permeability, measured as CSF/serum albumin ratio, was performed. There was a correlation between CSF HA levels (rho = 0.410, p < .001) and the BBB permeability (Fig. 2A) as well as CSF sCD44 and the BBB permeability (Spearman’s rho = 0.241, p = .033), Fig. 2B.

3.3. Associations between sCD44, HA and psychiatric rating scales

There was no significant correlation between any of the analytes and total scores of Suicide Assessment Scale (SUAS), Montgomery–Asberg Depression Rating Scale (MADRS) and the Brief Scale of Anxiety (BSA) without gender or age stratification. After gender stratification, there was a positive correlation between HA and total scores of SUAS in women (Spearman’s rho = .327, p = .037, n = 41).

HA levels correlated positively with age, therefore two subgroups were stratified based on the median age of the suicide attempters. The younger population of suicide attempters (< 37 years) had significantly higher levels (mean ± SD) of sCD44, 39.69 ± 19.72 pg/mL compared to 33.49 ± 11.94 pg/mL, but this significance was lost after adjusting for age. There was a positive correlation between sCD44 and HA levels in both suicide attempters and healthy controls, (Spearman’s rho = .323, p < .001, n = 139, Fig. 2B). A linear model of predictors of HA levels is depicted in Table 5.

The suicide attempters (n = 86) had significantly higher CSF levels of MMP9 (mean ± SD) compared to the healthy controls (n = 30), Figure 1 C. (135.87 ± 107.47 pg/mL vs. 94.43 ± 74.76, Mann–Whitney U test p = .004). The CSF levels of MMP9 correlated with the levels of sCD44, Spearman’s rho = 0.260, p = .005, n = 116, Fig. 2B. There were no differences in the CSF MMP3, MMP1 or OPN levels between suicide attempters and controls. Comparisons of a subgroup suicide attempters, MDD patients (n = 27) and non-MDD patients (n = 67), to healthy controls, did not reveal any significant differences in mean values of any of the analytes (data not shown).

Table 5

<table>
<thead>
<tr>
<th>Sample dilution</th>
<th>Detection limit (pg/mL)</th>
<th>Mean intra-assay CV%-values (between duplicates) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>10</td>
<td>370</td>
</tr>
<tr>
<td>sCD44</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Osteopontin</td>
<td>10</td>
<td>17.8</td>
</tr>
<tr>
<td>MMP9</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>MMP3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>MMP1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

3. Results

3.1. HA, sCD44, MMP1, MMP3, MMP9 and OPN levels in CSF of suicide attempters

There was a significant correlation between age and sCD44 (r = .314), HA (r = .425) and OPN (r = .346), p < .001 for all. There was a trend towards gender effects of HA (p = 0.086); such gender effects have been reported previously for HA (Nielsen et al., 2012). There were no relationships between the analytes and BMI values.

The levels of HA were significantly higher (+ 49.6%, adjusted for the effect of age and gender) in suicide attempters (n = 94) than in healthy controls (n = 45), Fig. 1A (ANCOVA, p = .003). Suicide attempters also had significantly higher levels (mean ± SD) of sCD44, 39.69 ± 19.72 pg/mL compared to 33.49 ± 11.94 pg/mL, but this significance was lost after adjusting for age. There was a positive correlation between sCD44 and HA levels in both suicide attempters and healthy controls, (Spearman’s rho = .323, p < .001, n = 139, Fig. 2B). A linear model of predictors of HA levels is depicted in Table 5.

The suicide attempters (n = 86) had significantly higher CSF levels of MMP9 (mean ± SD) compared to the healthy controls (n = 30), Figure 1 C. (135.87 ± 107.47 pg/mL vs. 94.43 ± 74.76, Mann–Whitney U test p = .004). The CSF levels of MMP9 correlated with the levels of sCD44, Spearman’s rho = 0.260, p = .005, n = 116, Fig. 2B. There were no differences in the CSF MMP3, MMP1 or OPN levels between suicide attempters and controls. Comparisons of a subgroup suicide attempters, MDD patients (n = 27) and non-MDD patients (n = 67), to healthy controls, did not reveal any significant differences in mean values of any of the analytes (data not shown).

3.2. Associations between analytes and blood–brain permeability

To further investigate the source of CD44-ligands in the CSF, the relationship between the analytes and the blood–brain barrier (BBB) permeability, measured as CSF/serum albumin ratio, was performed. There was a correlation between CSF HA levels (rho = 0.410, p < .001) and the BBB permeability (Fig. 2A) as well as CSF sCD44 and the BBB permeability (Spearman’s rho = 0.241, p = .033), Fig. 2B.

3.3. Associations between sCD44, HA and psychiatric rating scales

There was no significant correlation between any of the analytes and total scores of Suicide Assessment Scale (SUAS), Montgomery–Asberg Depression Rating Scale (MADRS) and the Brief Scale of Anxiety (BSA) without gender or age stratification. After gender stratification, there was a positive correlation between HA and total scores of SUAS in women (Spearman’s rho = .327, p = .037, n = 41).

HA levels correlated positively with age, therefore two subgroups were stratified based on the median age of the suicide attempters. The younger population of suicide attempters (< 37 years) had significantly higher levels (mean ± SD) of sCD44, 39.69 ± 19.72 pg/mL compared to 33.49 ± 11.94 pg/mL, but this significance was lost after adjusting for age. There was a positive correlation between sCD44 and HA levels in both suicide attempters and healthy controls, (Spearman’s rho = .323, p < .001, n = 139, Fig. 2B). A linear model of predictors of HA levels is depicted in Table 5.

The suicide attempters (n = 86) had significantly higher CSF levels of MMP9 (mean ± SD) compared to the healthy controls (n = 30), Figure 1 C. (135.87 ± 107.47 pg/mL vs. 94.43 ± 74.76, Mann–Whitney U test p = .004). The CSF levels of MMP9 correlated with the levels of sCD44, Spearman’s rho = 0.260, p = .005, n = 116, Fig. 2B. There were no differences in the CSF MMP3, MMP1 or OPN levels between suicide attempters and controls. Comparisons of a subgroup suicide attempters, MDD patients (n = 27) and non-MDD patients (n = 67), to healthy controls, did not reveal any significant differences in mean values of any of the analytes (data not shown).

Fig. 1. (A–C) Mean values of CSF hyaluronic acid (HA), sCD44 and matrix metalloprotease-9 (MMP9) levels of suicide attempters and healthy controls. There were significantly higher levels of HA in CSF of suicide attempters compared to healthy controls after adjusting for age and gender (ANCOVA, F1, 153) = 8.94, p = .003). The levels of MMP9 were significantly higher in suicide attempters compared to healthy controls, Mann–Whitney U test, p = .004. The blue lines represent the adjusted mean (ANCOVA) levels (age and gender when appropriate). Error bars: 95% CI (raw uncorrected data), **p < .01.**
years) with high HA levels (>118 ng/ml, median value) (n=12) revealed significantly higher SUAS scores (33.8 ± 11.0 vs. 23.6 ± 15.0 points [mean ± SD], p = .040) and MADRS scores (24.3 ± 8.4 vs. 16.4 ± 9.7 points, p = .017) compared to the other young suicide attempters (low age and low HA levels, n = 32).

4. Discussion

In the current study, we found that suicide attempters had higher CSF levels of HA and MMP9 than healthy controls. Suicide attempters also had higher levels of sCD44, but this significance was lost after adjusting for age. Since a previous GWAS study, conducted with post-mortem brains of suicide victims, identified CD44 as a candidate gene (Galfalvy et al., 2011), our study supports the notion that CD44-HA signaling might play a role in the pathobiology of suicidal behavior.

Increased HA levels in CSF have previously been reported in patients with CNS tumors (Laurent et al., 1996), meningitis (Laurent et al., 1996), spinal disorders (Sakayama et al., 2006), cerebral ischemia (Wang et al., 2002) and dementia (Nagga et al., 2014; Nielsen et al., 2012). In the studies of dementia patients, the levels of HA strongly correlated with the CSF/serum albumin ratio, a measure of blood–brain barrier (BBB) permeability (Ganrot and Laurell, 1974). The association between CSF HA levels and BBB permeability was replicated in our study. Increased levels of CSF HA might thus be a result of a general increase of proteins in the CSF, due to leakage from the blood to the CSF. However, HA is a large molecule, ranging from 5 to 20,000 kDa, and the normal CSF HA levels are usually many times higher than the plasma levels (Engstrom-Laurent et al., 1985; Laurent et al., 1996; Nielsen et al., 2012). Therefore, it is unlikely that the increased CSF HA levels are a result of leakage of HA from the blood. This is supported by the fact that no correlation between plasma and CSF HA levels were found in a study in neurodegenerative dementia (Nielsen et al., 2012). Instead, increased CSF HA levels and increased BBB permeability might be the result of the same underlying mechanism.

Dysfunction of the BBB has been suggested as a contributor to the development of psychiatric disorders (Shalev et al., 2009) and the HA receptor CD44 might have a direct role in maintaining the BBB integrity. A recent study in CD44 knockout mice reported increased BBB permeability in an experimental autoimmune encephalomyelitis model (Flynn et al., 2013b). Another study reported increased histamine-induced BBB permeability in CD44KO compared to wild-type mice (Flynn et al., 2013a). We could not find statistically significant differences in mean values of sCD44 levels, possibly due to insufficient sample size; still it is not known whether sCD44 levels are correlated with the amount of membrane-bound CD44 receptors or CD44 gene expression. Future studies are warranted to investigate the expression of membrane-bound CD44 receptors in the brain of suicide victims. However, mice lacking CD44 do not compensate by upregulating other HA receptors such as RHAMM (Receptor for Hyaluronan Mediated Motility), but rather have increased levels of HA in blood and tissues (Inoue et al., 2009); unfortunately, it is unknown whether a reduction in CD44 is associated with a compensatory increase in the levels of HA in CSF. Nevertheless, acute stress also increases HA levels in the tissues and blood of mice (Inoue et al., 2009). Therefore, we suggest that the increased levels of HA and increased BBB permeability in suicide attempters might be a compensatory response to altered number of membrane-bound CD44 molecules. This is supported by a pilot post-mortem study, showing lower expression of CD44 in the brain of suicide victims (Galfalvy et al., 2011).

The CSF used in this study was collected from a cohort of suicide attempters who have previously been reported to have increased inflammation markers compared to healthy controls, i.e. higher levels of the proinflammatory cytokine IL-6 (Lindqvist et al., 2009). Previous studies have suggested that inflammation might be the cause of increased levels of HA in CSF (Sakayama et al., 2006). In blood vessels, the endothelial glyocalyx contribute to the BBB integrity and HA is essential for the function of the glyocalyx (Gao and Lipowsky, 2010). Inflammatory processes open
up the BBB to support the migration of reactive cells into the brain (Abbott, 2000; Michel and Curry, 1999) and it has been suggested that HA levels in CSF increase when the BBB glyocalyx is degraded (Nagga et al., 2014). In this study, CSF HA levels correlated positively with an indicator of increased BBB permeability, and a previous study on the same patient cohort, showed amplified BBB permeability in suicide attempters compared to controls (Bayard-Burfield et al., 1996). Augmented inflammation also increases the levels of MMPs (Rosenberg, 2002) which are associated with BBB opening. For example, MMP9 contributes to BBB disruption and subsequent brain edema following traumatic brain injury (Shigemori et al., 2006). MMPs are also involved in both shedding of membrane-bound CD44 molecule and in modulation of the glyocalyx (Kajita et al., 2001; Lipowsky, 2011; Okamoto et al., 1999). MMP-9 concentration is regulated by cell membranes through its binding of adhesion molecules, including CD44 (Bourguignon et al., 2007). Our data indicate that CSF MMP9 levels correlate with sCD44 levels, which is consistent with the capacity of MMP9 to cleave CD44 from cell membrane (Chetty et al., 2012). Furthermore, the CSF sCD44 levels correlated significantly with the levels of CSF HA. CD44-HA signaling acts as a regulator of immune response (Jiang et al., 2011), thus the elevated levels of CSF HA and MMP9 in the suicide attempters might reflect increased activity of inflammatory processes in the brain, resulting in increased BBB permeability and presence of abnormal number of membrane-bound CD44 molecules.

In studies of inflammation in the central nervous system, pro-inflammatory cytokines have usually been measured. However, the use of cytokines as a biomarker has some disadvantages. Many cytokines are pleiotropic and due to their local mode of action, involving paracrine or autocrine processes, cytokines circulate at very low levels, often below or near the detection limit of the majority of assays (Bienvenu et al., 2000). There are also many other confounders, which could affect the levels of cytokines. For example, correlations with cytokines and BMI, age, smoking, sex, and physical activity have been reported (Haack et al., 1999; Himmerich et al., 2009). In this study, we hypothesized that increased levels of hyaluronic acid (HA) is an effect of increased BBB permeability and low-grade inflammation. In patients where increased inflammation might be a factor contributing to suicidal behavior, an add-on treatment with anti-inflammatory drugs to conventional anti-depressive treatments might be beneficial. Even though the HA levels correlated with age and possibly differs between men and women. The fact the levels are in thousand-fold higher concentration than cytokines, very little CSF is needed to get a robust quantification. Since specifically low molecular weight HA is associated with inflammation (Jiang et al., 2011), future studies investigating the potential of low molecular weight HA as a biomarker of low grade inflammation and of finding candidates for add-on treatment with anti-inflammatory drugs is warranted.

There are some limitations to our study. The gender distribution of the patients from whom CSF was analyzed was uneven, although we did not find any gender-dependent differences in the relevant biological measures. Another limitation is the use of an exploratory approach and the examination of the specific role of CD44-HA signaling in the development of suicidal behavior without addressing the putative role of other relevant contributors, like CSF markers of inflammation and monoamines.

In summary, the current study demonstrates that increased CSF HA and MMP9 levels and increased BBB-permeability may be implicated in the pathological mechanisms underpinning suicidal behavior. Future studies should focus on CD44-HA signaling components as putative biomarkers for mental distress and suicidality, as previous studies have shown that levels of certain immune mediators may discriminate between suicide attempters and controls (Janelidze et al., 2011; Lindqvist et al., 2011). In addition, the CD44 signaling pathway may be considered a novel target for intervention in stress-related mood disorders.

References

genesis 16, 609–705.
Regulation of the cell adhesion molecule CD44 after nerve transection and direct trauma to the mouse brain. J. Comp. Neurol. 426, 468–492.

